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Final Report 
on 

Highly Accurate Adaptive Finite Element Schemes 
for Nonlinear Hyperbolic Problems 

1     Introduction 

This document is a final report of research activities supported under General Contract 

DAAL03-89-K0120 between the Army Research Office and The University of Texas at Austin. 

The report describes work performed during the period July 1, 1989 and June 30, 1992. The 

Principal Investigator of the project was Professor J. T. Oden. The project supported several 

Ph.D. students over the contract period, two of which are scheduled to complete dissertations 

during the 1992-93 academic year. Research results produced during the course of this effort 

led to six journal articles, five research reports, four conference papers and presentations, 

one book chapter, and two dissertations (nearing completion). More complete summaries of 

these documents are given later in this report. .' 

It is felt that several significant advances were made during the course of this project that 

should have an impact on the field of numerical analysis of wave phenomena. These include 

the development of high-order, adaptive, Zip-finite element methods for elas^odynamic calcu- 

lations and high-order schemes for linear and nonlinear hyperbolic systeras. Also, a theory 

of multi-stage Taylor-Galerkin schemes was developed and implementedMn the analysis of 
several wave propagation problems, and was configured within a genera/ /ip-adaptive strat- 

egy for these types of problems. Further details on research results aryd on areas requiring 

additional studv are given in the next section of this report and in an/appendix. 
/ 

/ 

/ 

/ 
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2    Review of Research Results 

2.1      General Goals 

Despite a half century of study, despite the introduction of modern computational techniques 
and machines, and despite a multitude of papers, conferences, and journals on the subject, 

the field of numerical analysis of complex wave phenomena has actually not progressed much 

beyond its glorious beginnings in the pre-World War II era of computational modeling. In 

a sense, the basic issues today are the same as they have been for a half century: accuracy, 

stability, and consistency of the numerical approximation of the propogations of functions 

which possibly possess discontinuities. Many textbooks are filled with examples of successful 

schemes for a simple one-dimensional linear wave equation, or perhaps Burger's equation 

in one dimension. Indeed, the theory of numerical analysis of wave phenomena, as it exists 

today, is still basically a one-dimensional theory, and the most significant advances in the 

subject over the last decade are the introduction of methods which seem to work well for 

certain one-dimensional cases. 

Among major goals of research in this area are the development of highly accurate, stable, 

non-oscillatory, and convergent numerical approximations to study a multitude of features 

of solutions of hyperbolic systems of conservation laws that can be used efficiently to model 

wave phenomena of interest in science and engineering. But these goals have proved to be 
paradoxical; e.g., monotone schemes may non-oscillatory and stable, but they are only first- 

order accurate, and higher order schemes, while providing higher accuracy, are almost always 

oscillatory and frequently unstable. Moreover, for nonlinear hyperbolic systems, questions 

of uniqueness of solutions arise and the additional requirement that the numerical solution 

be "physically meaningful" must be added to the list of criteria. 

The emergence of adaptive computational schemes over the last decade has provided a 

possible basis for achieving the historical goals in the numerical analysis of wave phenomena: 
manipulate mesh parameters in such a way that both high-order accuracy and stability can 

somehow be achieved. In this way, the computational process is optimized, and any tendency 

of the scheme to oscillate or to lose accuracy would, in theory, be compensated by appropriate 

adaptation of the control parameters. A key to this approach is the basic idea of developing 
reliable a posteriori estimates of the numerical error in a finite element approximation, mesh 

parameters such as the mesh size h, spectral order of approximation p, or the location or 

the relocation of nodes, can be adapted to keep error within preset tolerances. Importantly, 

the computational cost can also be added to the cost functional so that, at least in theory, 

highly efficient schemes can be used to achieve these classical goals. 

The project summarized in this final report had as its basic objective the exploration of 

new types of ftp-finite element methods for the analysis of wave propagation problems, with 



particular emphasis on stress waves in solids. The starting points for all of the studies in 

this effort were the following: a high-level hp data structure was constructed in which the 

mesh size h and the spectral order p within a finite element mesh were designed to be free 

parameters. The capability for either using /i-refinement, p-enrichment, or kp-refinements 

was embodied in the data structure, the data structure was designed to admit fairly general 

a posteriori error estimates, so that some research and experimentation could be done on 

the calculation of errors to drive any adaptive process. Finally, the specifics of the adaptive 

process were left open so that a number of different strategies could be explored. With 

regard to the general approaches considered in the research, two were explored: 

1. Use of discontinuous Ap-finite element methods for nonlinear hyperbolic systems, and 

2. the use of continuous Zip-approximations with very high-order implicit schemes for the 

particular classes of hyperbolic systems that arise in the study of stress waves in solids. 

These two approaches are discussed in more detail in the following sections and some tech- 

nical details are given in the appendices. 

2.2     Stress Waves in Solids: RK and TG Schemes 

We briefly outline here the approach and some results of the research on high-order schemes 

for calculation of transient phenomena in elastic solids. 

To construct a successful adaptive scheme for the hyperbolic partial differential equa- 

tions that occur in linear elastodynamics, the basic ingredients mentioned above must first 

be addressed: 1), a functional /ip-adaptive data structures in hand, a high-order temporal 

scheme must be identified to advance the solution in time; 2), an efficient method of a pos- 

teriori error estimation must be developed to provide the data for controlling the numerical 

process; 3), an adaptive strategy must be developed to control (optimize) the mesh during 

the evolution of the wave phenomena. 

In the early months of this phase of the project, considerable effort was spent exploring 

classical high-order methods for time integration. Surprisingly, relatively few existing meth- 

ods survive our criteria for efficiency and applicability to very large systems. The classical 

Adams-Bashforth methods, for example, require a significant amount of memory and are 

only conditionally stable. The Runge-Kutta methods, however, do seem to offer a number 

of advantages. They are implemented locally over a time step, which was convenient for hp- 

adaptive schemes, and they could be used to produce results of arbitrary order in time. A 

gTeat deal of time was spent during early phases of this project encoding and experimenting 

various forms of Runge-Kutta methods, including the singly-implicit Runge-Kutta schemes, 

implicit Runge-Kutta schemes, and traditional semi-implicit Runge-Kutta schemes.  These 
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proved to be somewhat effective, but in many cases also were accompanied by unpleasant 

oscillations for very high order schemes. 

A new study was initiated on a completely new family of methods which are of a form 

similar to so-called Taylor-Galerkin methods used in certain flow calculations. Traditionally, 

Taylor-Galerkin methods no higher than third-order appear in the literature, and these are 

known to be very inefficient and expensive. However, it was observed that by reducing the 

elastodynamics problem to a first-order hyperbolic system and then applying the Taylor- 

Galerkin strategy, a recurrence formula could be derived which could produce very robust 

and stable schemes of arbitrary high order. Thus was invented the first high-order Taylor- 

Galerkin schemes for wave propagation. These schemes are still under study, but they are 

known to possess many attractive features and have proved to be quite superior to traditional 

Runge-Kutta methods in a number of numerical experiments. 

In the final months of this phase of the project, still another version of the implicit, high- 

order, multi-staged Taylor-Galerkin scheme were developed in which second-order hyperbolic 

systems are derived which are equivalent to the equations of linear elastodynamics.  It v. 

observed that the governing operators naturally split into similar component parts which 

made application of the TG ideas straightforward. 

Considerable time was spent on a posteriori error estimation for these types of schemes. 

These a posteriori estimates were developed for not only the time-dependent case but also 

for the elliptic systems obtained during each step of the Taylor-Galerkin approximation. 

The situation is this: rigorous mathematical theory for a posteriori error estimates for linear 

elliptic systems was developed and applied step-wise to the Taylor-Galerkin scheme. In the 

Taylor-Galerkin scheme, the elliptic step, of course, involves the time step so that the a 

posteriori estimate does include a description of this mesh parameter. A number of oppor- 

tunities for measuring temporal error also present themselves. In particular, the usual use of 

predictor and a corrector in time allow for a fairly straightforward estimate of the temporal 

component of the approximation error. To date, a number of test problems have been run 

and results suggest that the total error in the two-dimensional elastodynamics problem can 
be kept under control and that fairly accurate error estimates can be obtained. 

Finally, it is necessary to address the Zip-adaptive strategy. This is an area in which con- 

siderable additional work reamins to be done. During the course of the project reported here, 

a number of so-called three-step schemes were explored in which criteria were established 

for producing first an h-refinement of a mesh and then a p-enrichment to control the error. 

Various versions of this strategy have been studied experimentally. The meshes obtained by 

these schemes are certainly not optimal, and some are quite far from optimal, but they can 

bo implemented with great speed and thus the overall computational time of implementation 
often proves to be quite acceptable. 



The status of these schemes is this: a number of papers on the mathematical ideas and 

the implementation have been published, a working research code for two-dimensional cases 

has been developed, and a number of test problems have been run. Further work remains to 

be done on error estimation, adaptive strategy, and on numerous details of implementation, 

such as the possibility of using domain decomposition and parallelization during the compu- 

tational process. Mathematical issues deserving study include the study of stability of the 

TG schemes, a priori error estimation, proof of convergence of the Ap-adaptive strategies, 

and further work on rigorous a posteriori estimates. 

2.3     Discontinuous hp Methods for Nonlinear Conservation Laws 

As noted earlier, much as been said in recent literature on the numerical solution of hy- 

perbolic conservation laws with regard to the use of flux limiting methods and high-order 

approximations. This has led to the notions of TVD schemes, ENO schemes, etc., all of which 

seem to work very well for one-dimensional problems provided that no boundary conditions 

of significance are imposed. To extend these ideas to reasonable two- and three-dimensional 

cases involves some significant generalizations of the existing theory. 

One generalization that was felt deserved some study was the notion of TVB (total vari- 

ation bounded) algorithms developed Cockburn and Shu. While their work itself originally 

focused on one-dimensional cases, much of their theory is general and potentially extendable 

to higher dimensional cases. 

As another thrust in the present research effort, the study of high-order hp schemes 

for discontinuous Galerkin approximations of nonlinear hyperbolic systems was undertaken. 

These were based on generalizations of the Cockburn-Shu TVB schemes, and employed high- 

order hp quadrilateral finite element approximations in two dimensions. The key to these 

types of methods is the construction of a special projection operator which maintains the 

TVB character of the numerical solution. During this project, an algorithm for producing 

such a projection was indeed developed and has been applied successfully to discontinuous hp 

approximations of hyperbolic conservation laws. The status of this work is that one paper 

on the subject has been published, another is in preparation. Several important details 

remain unresolved. These include the development of a useful adaptive strategy for these 

techniques, and a numerical strategy that truly exploits the spectral character of these types 

of approximations while using the /?.-adaptivity to control oscillations near shocks and contact 
discontinuities. 
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APPENDIX 

High-Order Taylor-Galerkin and Adaptive 
hp- Methods for 2nd order Hyperbolic 

Systems 

In this Appendix a brief summary of some of the details of approach and numerical results 
of the hp-adaptive Taylor-Galerkin algorithms described in the text is given. This appendix 
is excepted from an article on the subject which is entitled "High-Order Taylor-Galerkin 
and Adaptive h-p Methods for Hyperbolic Systems" by A. Safjan and J. T. Oden. 

1    INTRODUCTION 

The use of high-order adaptive finite element methods for elliptic boundary-value 

problems in which the mesh size h and the local spectral order/? of the approximation are 

varied in order to control the approximation error have been shown to produce exponential 

rates of convergence (e.g., [7, 8]). These methods treat the mesh variables h and p as 

arbiträr' parameters, and, through a fairly elaborate data structure, distribute mesh sizes 

and orders nonuniformly over a mesh to control local errors, which are estimated using a- 

posteriori estimation techniques [7]. Thus, they represent optimal-control strategies which 

attempt to configure the mesh to optimize the computational process. Such strategies have 
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proved to be effective for several classes of problems, including problems in gas dynamics 

modeled by the Euler equations [11 and pioblems in compressible and incompressible flow 

(e.g., [71). 

For time-dependent problems, however, the use of high-order spatial approximations 

requires the use of a balanced temporal approximations that is high order as well.The 

search for robust high-order schemes that function efficiently on spatially-nonuniform 

meshes has been an elusive one, and few of the traditional schemes of high order (e.g., 

implicit Runge-Kutta methods) have proven to be effective for these types of 

approximations [9]. 

The so-called Taylor-Galerkin schemes represent generalizations of the Lax-Wendroff 

algorithm and have been used effectively for producing second- and third-order temporal 

approximations [5, 3]. However, no procedures for extending these techniques to temporal 

approximations of arbitrary order appear to be available. 

In the present work, we present a new family of stable high order Taylor Galerkin 

(TG) methods for the numerical solutions of second-order hyperbolic systems. It is shown 

that for second order systems, a multi-stage process can be used that produces schemes of 

order 2s for s-stages, each of which involves the solution of a second-order system of 

elliptic equations. A detailed stability analysis is provided for the case of linear systems 

which establishes choices of parameters that result in unconditionally stable schemes. 

An error estimation procedure is also presented which leads to estimates of both the 

spatial and temporal approximation error. In addition, an adaptive algorithm is developed 

which employs an /jp-adaptive finite element method for controlling the spatial errors. 

For focus, applications to linear elastodynamics problems in two space dimensions 

are described. The results of numerical experimnts on representative two-dimensional 

stress wave propagation probler. are also given. The results indicate that the algorithms 

are capable of delivering high accuracy on meshes with very high order spatial 

approximations. Very little oscilations of solutions in the vicinity of wave fronts is 

observed, despite the very high-order approximations and minimal numerical dissipation. 



2. Model 2nd order Hyperbolic System: Equations 
of Linear Elastodynamics 

As a starting point, we consider equations of linear elasticity in the following form: 

divT(u) + p0b = potfu 

T{u) = 2pe{u) + XTr(e)I 

2E{U) = Vu +  VuT 

in  Q (2.1) 

where : 

Q is a domain in RN, N = 2, 3 

u = u(x, t) is the displacement vector at particle x e Q at time t > 0 

T(u) = the stress tensor 

£(u) = the strain tensor 

b(x, t)    = the body force field 

p0 = mass density 

p., X = Lame coefficients 

We reformulate equations (2.1) in terms of u only and arrive at 
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Podtu - DTCDu = p{)b (2.2) 

where D is a generalized gradient operator : 



( *' 
0 o  \ 

0 *2 0 
dcf 

D    = 
0 

0 

<?3 

0 

<?3 
0 

^3 
<?2 

^  d2 *1 
0 y 

(2.3) 

and C is a 6 x 6 symmetric positive definite matrix of elastic constants 

dcf 

c = 

(C\\\\  ^1122 ^1133 ^1123 ^1131 ^1112^ 

^2222 ^2233 ^2223 ^2231 ^2212 

C3333 c3323 c3331 c3312 

C2323 C2331 C23l2 

V 
^3131 C3112 

c 1212/ 

(2.3) 

For isotropic material elasticities Cm are given in term of Lame* constants X and ji by 

Ciju  = Sij du X + /z( 5tt $/ + 5// fy) (2.4) 

Equations (2.2) are to be solved in a domain Q.CRN, N = 2, 3. Typically, two particular 

cases are of interest: 

• interior problems when Q. is bounded 

• exterior problems when Q is a complement of a bounded set 

The initial boundary value problem is further specified by introducing boundary 

conditions. We consider the following kinds of boundary conditions: 

1.   Kinematic boundary condition 

A 
11 = 11 on   r (2.5) 

where u is a prescribed displacement vector on the Tu - part of the boundary 

2.   Traction boundary condition 



T(u) • n = / onT, (2.6) 

where n is the unit outward normal to the boundary and / is a prescribed traction on the Tt 

- part of the boundary (XI = Vu u T;  , Tu r\ Tr = 0). 

The initial boundary value problem is completed by specifying initial conditions of the 

form 

u = u0 and dtu = v0   at / = 0 (2.7) 

In the case of homogeneous boundary conditions, the problem can be cast into the 

Hubert space formulation as follows (see [4] for a detailed discussion). 

We introduce 

•  The Hubert space 

(2.8) 
(u, v)H = (u, Mv)(L2f 

with the weighting matrix M = {mu) 

mu =pQ8la (2.9) 

•   Operator # : H z> D(£) > H 

def 

fttt   =   -M^DTCDu (2.10) 

where D(S) is the domain of # defined as 

D(8) =  { ue H^Q) I DrCD« e H) (2.14) 

for the Dirichlet boundary value problem, and 

D(8) =  { ue H\Q) I CDu G D*(ft)) (2.15) 



for the Neumann boundary value problem, where 

D'(Q) =  { we (L\Q)f I 3* e H(Q)tVv e H\Q), («, Dv\L2)M =(w,v\L2f } 

(2.16) 

and M = N(N+\)I2 . Note that the boundary condition on u is satisfied in the sense of the 

trace theorem, whereas the boundary condition on / is interpreted in the sense of the 

generalized Green's formula. For these reasons, the displacement boundary condition is 

classified as the Dirichlet boundary condition and the traction boundary condition as the 

Neumann boundary condition for operator & 

Within the Hubert space formalism, the initial boundary value problem of linear 

elasticity can be reinterpreted as an abstract 2nd order Cauchy problem : 

1   dfi   +   Mu   = 0 t> 0 

du 
I u  =  «o »2T =  vo 

t= 0 
(2.17) 

An // - valued function of time u = u{i) 

[0, oo)3r —> w(r)e // (2.18) 

is called a weak solution of (2.17) if: 

(i)   u0 and v0 satisfy regularity assumption 

(ii)   u(t) satisfies regularity assumption 

UE C([0,  oo);//) (2.20) 

(iii)    «(f) satisfies (2.21) 



-  (vo,<HO,-j)iL2f     =   0 

(2.21) 

for every test function 

0e C0(R; D(ff))nC2(R; //) (2.22) 

Notice that this definition admits, in particular, solutions in the d'Alembert sense. 

We record now some fundamental results concerning operator #and the existence and 

uniqueness of weak solutions u. We restrict ourselves to the case of a bounded domain Q. 

1. Operator #is self-adjoint. 

2. Operator fS]f2 exists. 

3. The spectrum of <ff, o(Ä), consists of eigenvalues only. For the Dirichlet problem all 

the eigenvalues are positive 

o(«) =   {ä>,,ä>2, ...} 

0 < Q)x < 0)2 < • •■ ^ 0)n    >  oo 

and for the Neumann problem the eigenvalues are non-negative 

o(Ä) =  {<y0, o)x , co2, ...} 

(2.22) 

(2.23) 
0 = COQ < (0^ < C0i < ... < 0)n    >  oo 

All eigenvalues are of finite multiplicity and corresponding eigenspaces {un} are 

orthogonal. 

4.   For the Neumann problem, the eigenspace corresponding to zero eigenvalue, i.e., the 

null space of operator ft is spanned by constant vectors and by 

(2.24) 

f° > fX2\ (X2\ 

XI 0 -X] 

\-x2) \-x\J U) 



5.  Operator £ admits a clasical spectral decomposition 

# = y °°    (0dPn (2.25) 

I oo 1 = TwdP" (2-26) 

where dP is the orthogonal projection on the eigenspace [u } corresponding to con 

and «o = 1» 0 for the Dirichlet and Neumann problems, respectively. 

5. A weak solution u exists and is unique. Moreover, it is of the form 

u{t) = cos(9Wt)uQ - &Msin (W2t)v0 (2.28) 

6. If the initial condition functions u0 and vQ satisfy an additional regularity assumption 

u0E D(Jflß).v0€ H (2.29) 

and the solution u€ Cl( [0, oo) ; H ) n C( [0, oo); D(SXI2) ), then the weak solution is 

also a solution with finite energy: 

£*(•) = WU^H  
+   ll^172"»?/ (2.30) 



3    High-Order Taylor-Galerkin Methods 

Given a bounded domain Q. in RN, N = 2, 3, we consider a system of conservation 

laws of the form 

utt + Fk( Vu)k =   0    xeQ.       />0 

k= 1 N 

(3.1) 

where u = u(x, t) is a column vector of M unknowns, Fk, k = 1,..., N are vector-valued 
functions of Vu, commas denote the differentiation with respect to time t and spatial 

variables xk and the usual summation convention holds. 

This system of equations is accompanied by an initial condition, 

u(x, 0)= uQ(x)y      ut(x, 0)=  v0(x) xeQ (3.2) 

and by appropriate boundary conditions. 
By introducing velocity v = u t as an auxiliary variable, equations (3.1) can be 

converted into the following first order system (in time): 

j  v ,   +   Fk(Vu) k =    0 

u  .   -    v     =     0 
xeQ      t > 0 (3.3) 

Finally, (3.3) and (3.2) is cast in the form of an abstract Cauchy Problem 

{«•■ +   A U   =   0 

u  = un 

t> 0 

t= 0 
(3.4) 

where 

def 

A     = 
(     0 Fk(V(-))k    \ 

-I 

(3.5) 



V is a group variable, U - 
M 

, and U0 specifies initial conditions, U0 = 
'vo^ 

u, 

3.1 Taylor-Galerkin Schemes for Nonlinear Systems 

Given the solution Un = U(tn) at time tn = nAt, we seek the next time step solution 
(jn+l _ u(t^ + £/) jn the following form 

Z, - Ut2ZUl = Un    + //10Ar £/"     + vl0At2Un
Jt 

Z2 - \At2 Z2,tt = Un    + /i20Ar £/"     + v20Ar 2£/^ 

+ /i2iArZ1>r     + v2iAr2Zi,„ 

Z, - AA/2Z5,„  = Un    + ßsoAt Un
t      + vs0At2Un

lt 

+ lis\AtZx,t      + vslAt2ZUlt 

+ ... 

+ /ij^Ar Z,.^ vSj-iAt2Zs.\jt 

(3.6) 

where 

Z, - V(tn + c- Ar), i = 1,2,..., s - 1, are intermediate solutions called "internal 

approximations" 

Zs = U(tn+ At) - Un+] is the next time step solution (i.e., c  = 1) 

Vii • v/, • ^o • vm • ci   6 Ä, i = 1, 2,..., 5   ;y = 1, 2,..., /  - 1 
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A e i?+ is a stability parameter 

s = number of stages 

Coefficients /i- , v.. , ßi0, vi0, ci, are to be chosen so as to obtain the highest possible 

order of accuracy, subject to stability or other constraints. A free parameter X is to be 

chosen from stability considerations. 

It is convenient to rewrite (3.6) in the following compact form: 

(*1\ nut \ 
(Zu \ z2 Zljt *u f      un 

\ 

- At2v  <g> - Ar ß ® =   K ® At  Un
{ 

, . • I**2":» ) 

\ZSJ \Zs,tt   J \ZSit   J 

(3.7) 

where 

v, p G   EM , K e   Rs*l 

v     = 

f X    0   0 0   0   o\ 

v21  A    0  0   0   0 

V31 V32   ^   °    °    ° 

<Vsl  V*2 Vs3'   Vss-\X) 

=   (<! c2c3 <0 

ß     ~ 

f0    0    0  0   0    0^ 

/i21   0     0   0    0    0 

^3l/i32 oooo 

V/^,1  Vgl ^3 •   ^,-1 0 / 

K      = 

1 ^20 ^20 

1 ^30 ^30 

V^vO VsoJ 

(3.8) 
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Matrices v, ß and JC together with vector c completely characterize difference scheme (3.6). 

A distinct feature of (3.6) is that coefficient matrices vand ß are lower triangular 

matrices which makes the resulting scheme semi-implicit (i.e, to compute Z; it is necessary 

to know Zi-i, Zi-2,.... Z\, but it is not necessary to now Z,-+i). Moreover, all diagonal 
elements of v are equal (v,/ = A, /=1, 2, ..., s) and so are those of ß (ßu = 0, i=l, 2, ..., 

s). This makes the operator defining the left-hand side of each stage of (3.6) identical for 

linear (or linearized) problems, and, hence, significantly reduces the cost of the method. A 
particular choice of zero diagonal elements of ß is made with an eye on a well-posedness of 

a typical one stage problem and a possible splitting of the operator defining the left hand 

side of each stage. 

To make the i-th stage solution Z, m-th order accurate, it is necessary to satisfy the 

order conditions for Z, and to make the previus stage solutions Z/-i, Z;_2,..., Z\, to be at 

least of the order m-\. (Otherwise, some coefficients have to be set to zero, e.g., if Z/.j is 
of the order m-2, then, necessarily ßij.\ ~ 0). The order conditions for Z/ are obtained by 

expanding it in Taylor series at Vn : 

Z<   = Un+(CiAt)U" +;kc.Ar)2(A +... + J7 {ciM)m-^rUn + 6>(Ar"+1)     (3.9) 

plugging (3.9) into the left-hand side of the i-th stage equation 

Z'  " ^Ej.\(ßü**zti + viAt2Zhti) = U" +  m^Vn
t  + Ki^t2Un

a (3.10) 

and equating coefficients of powers of Ar to zero. This leads to the following system of 

nonlinear algebraic equations 

k = 1,2, ...,m 

2v,o.f«2 (3-H) 
I 0, otherwise 

Equations (3.11) are referred to herein as the order conditions. 

We now proceed to derive coefficients for some particular schemes. In the sequel we 

adopt the following notation: TG(.v, m) = ,v-stage m-th order scheme. 
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2-stage schemes of order 4 (TG(2.4) ) 

We make Z\ and Z2 to be OCA/3) and 0(A/4), respectively, which leads to the following 

system of equations: 

2vio = c2
l-2X 

6X = c] 

^20+/^2i = l (3.12) 

2(v20+ V21) + 2/i2iCi = 1-2A 

6v2iCi + 3/i2i c\ = 1-6A 

12v2icf +4/i2iq = 1 - 12A 

The solution of (3.12) reads: 

c,     =      /i,o   =   (6A)i/2 

V10   =      2A 

Vl\     = 
1 - 6A       l 

6A          2 
1 - 12A 

(6A)3/2 

V21     = i   ' - m   -\   ' ' UX                                          (3.13) 4      6A          3   (6A)i/2 

M20    = 
1 -6A        1    1 - 12A 

6A      '   2   (6A)3/2 

V20     = 
1 (    l    1 - 12A         2   1-6A 
2 4       6A             3  (6A)i/2 

A different 4th order scheme can be obtained by discarding the 3rd equation of (3.12) 

(i.e., making Z\ to be only <9(Af2) ) and by taking Hi\ = 0. The coefficients for this 

scheme are given below 

1    1 
/Ho   =   2   ~ 

- 12A 
C\ 

- 6A 

ViO    = 
1 n - 12A^ f  -   * 

Pl\  = 0 
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-    ■      ä    tfg 
ßio   =      1 

^20     = Z 
1    1 - 18A 
6   1 - 12A 

3-stage scheme of order 5 (TG(3,5) ) 

We make Z\t Z2 and Z3 to be OCA/3), OCAf4) and OCAr5), respectively, which leads to the 

following system of equations: 

P\0 = C\ 

2vio -«? •2A 

6A = 2 

/i20 + /i21 = Q 

2(v20 + v2i) + 2/i2iCi = Cj - 2A 
2     3 

6V21C1 + 3/Z21 ci = c2 " ^C2 

12v2icf + 4//21 q = c* - 12Acf (3.15) 

^30 + ^32 = 1 

2(vio + V31 + V32 + M32) = 1- 2A 

6(V3i +U32C2) + 3/i32 C2 = 1- 6A 

12(v3i +V32^)+4/i32^=l-12A 

-2 ) + 5^32 4 20(v31 +Vj2^)+5/i324=l-20A 

A*2i =0 

For stability purpose we require additionaly that 

V32(v2iVio- v2oA) = 0 (3.16) 

A solution to (3.15) and (3.16) is given below: 

c,     =      /i,o   =   (6A)V2 

vio   =      2A 
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ci = ^(28 ±8) 

/*2i = c\    I qc2 -   - c2 - 6A(qc2 - c2) ] 

V21 = cj2   I 4  c2   "    3   C1C2  *   ^(3c2 "   2c\ °1  ) 1 

/*20 = C2   -  //2l 

V20 = \c\- \ ~  V21 - ^21^                                                           (3.17) 

P32 = (6C2   -  4C2)"1 

V32 = 0 

M31 = 0 

V31 = g   -  A - i M32^                                                                                                                                   ; 

M30 = 1   -  /i?2 

v$o = -  - X - \h,\ - n-n                                                           ■ 

3-stage imbedded scheme of order 4 (TG(3.4) ) 

To allow for an error control, we construct a method in which a 1-stage 2nd order 

scheme is imbedded in a 2-stage 3rd order scheme which, in turn, is imbedded in a 3-stage 

4th order scheme. (We symbolically write TG(1, 2) "c" TG(2, 3) "c" TG(3, 4) ). 

Toward this end, we make Z\, Z2 and Z3 to be 0(At2), O(Ap) and OCAr4), respectively, 

and we set C\ * C2 = 1. Thus, each stage is an approximation to the solution U at time t + 

Ar and the difference ||Z; - Z/-i|| defines a relative error for Z/_i. Resulting order 

conditions are listed below: 

/iio= 1 

2v10= 1 -2A 

/i20+/i21 = 1 

2(v20+ v'2i) + 2/i2i= 1-2A 

6v2i + 3^21  = 1- 6A 

M30 + /i32 = 1 (3.18) 

2(v30 + V31 + v32 + ^32) = 1- 2A 

6(v^i +v32C2) + 3/i32 = 1-6A 

12(v31 +v32) +4/i32 = 1 - 12A 

/i3I =0 
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For stability purpose we require additionaly that 

V21V10- V20A = 0 

V32(V2lP 10- /i2iVio -M2oA) = 0                                                      (3.19) 

A solution to (3.18) and (3.19) is given below: 

|iio   = ci   =   1 

VlO     = 1 2 
2 - K 

ci      = 1 

3     (5   -*)(-Ä   +A) 
VlO    = 4                    I       A 

8   "  A 

V21  = 
3 *<"£   +A> 
4 I      A 

8   *  A 

/i21     = 5  - 2A  -  1    ~^~        -                                     (3.20) 
8    " 

2        „         3     A("^   + A> 
/*20    = 

8   "  A 

/i32    = 
1 
2 

V32     = 0 

^31     = 0 

V31     = 12        A 

^30    = 0 

M30    = £                            ■ 
Next, using the original equations (3.1) - (3.5), we calculate the time derivatives in 

terms of spatial derivatives as follows: 

I/,       =    - 4f/ 

(3.21) 

=   - 

(Fk{Vu)k  \ 
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Utlt     =   - (AU ), 

Fk(Vu)tk     j 

(3.22) 

dFl 
where Ru = -5— are the Jacobian matrices corresponding to fluxes Fk. In deriving (3.22) 

we used the following relations: 

v„      =   - (F\Vu)k)tl 

=   - (Fk(Vu)t )k 

(3.23) 

(dFk       \ 

=   - (Ru(Vu)v,i)k 

Also, it is important to notice that U,t can be expressed in terms of spatial derivatives of u 

and v of the order at most 2, which can be effectively handeled by C° continuous finite 

elements. 

Next, replacing the time derivatives in   (3.7) by formulas (3.21) and (3.22), and 

denoting Z- = 
u 

and Un = 
i ) ," 

, we arrive at the following system of equations 

Vi       - 

u. 

2JLi (WAI [-Fk{Vuj)k ] + VijAt^-iR^Vuj) Vjj)k) ) 

vn +  Ka&t[-Fk(Vun)k ] + Ki^t1[-(Rld{Vun)vn,i)k] 

£jL, imfii [i» 1 + ^A'2 [-***(ify),* ] ) 
M" +  Ki2M[vn ] +  Kj3Ai2[-F*( 7II« )j/t ] 

i = 1,2, ..., s 

(3.24) 

where the indices i andy are used to denote a particular stage, the indices k and / refere to 

the axis of a Cartesian coordinate system, comma denotes partial differentiation, and V 

summation convention for k and / holds. 
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W v    \ 
, integrating 

wu   J 

'fl dQ 

w vv
n dx 

Finally, multiplying (3.13) by vector-valued test function W = 

over Q and integrating by pans, we arrive at the variational formulation of the form: 

Find vi and Mt, j = 1, 2,..., s, such that 

J   M^V; dx 

- YJ=1 MyAr [\ wT
vk F*( Vuj) dx - \    w\ Fk( Vuj )nk ds ] 

- 2^, V//A*2 [J^(ÄU( P«;) vy,/ ) <fc - J     ^ ( J?w(7«,) y,-,)** ds ] 

■ j, 
- KftAr [      wT,Fk(Vun)dx -\     wT

v Fk(Vun)nkds] 

- Ki3At2 [      /,( Ru( Vun) vn i) dx - I     ** ( /?w( P7«") v" / )** ds ] 

(3.25) 

\^T
uUidx 

- YJ=^1^ LwTuvJdx 
it 

- Yf i Vi/Af2 [ J >/ . F^Vuj)dx - [    H£F*(VII/)/***] 

=    I   w   un dx 

- Ki2&t J   W   vndx 

- KßM2 []   wT
mkF*i Vun) dx   - I     wT

u F
k( Vun)nk ds ] 

for all admissible test functions wv and wu . 

where « = (nt) is the unit outward normal. Weak form (3.25) is the basis for FE 
approximations. 
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3.2 Taylor-Galerkin Schemes for Linear Systems 

We now give an alternative derivation of TG schemes which is valid for linear 

systems of conservation laws with constant coefficients addmiting spectral decomposition 

of underlying spatial operator. 
Given the solution Un = V(tn) at time tn = nAt, we seek the next time step solution 

fjn+\ _ u(j^ + A/) in the following form 

[(/ - XAfiP/dt2)... (/ - XAt2#/dt2)]un+x 

-s times- 

- [/ + *,(A)Af<?/A + x2UW2^/dt2 + ... + ^(A)A^^VÄ25 ]ün + 0(A/m+l)    (3.26) 

where 

*/A)e Ä, j= 1,2, ...,25 

y (A) = 0, j = m + 1, m + 2, ..., 2s 

5 = number of stages 

w < 2.? is the order of the highest derivative at the right-hand-side of (3.26). 

Coefficients £XA) are to be chosen so as to obtain the highest possible order of accuracy, 

subject to stability or other constraints. As previously, a free parameter X is to be chosen 

from stability considerations. 

The coefficients %XA) are determined by expanding Un+l at the left-hand side of (3.26) 

in a Taylor series about Un and equating coefficients of powers of A/ to zero. Accordingly, 

identity (3.27) 

[(/ - XAt2Pldt2)... (/ - XAt2£ldt2)][l +Atd/dt + )rxAt2Pldi2 + ... + 7±TAilsä2s/diis ]Un 

1 s times ' 

= [/ + XM)Atdldt + x2W&t2Pldt2 + ... + z^MAfips/di1* ]un + Ö(Arw+1) 

(3.27) 

leads to the following relations for y (A) 

19 



Zitt) = 1 

»(*-5-(0A 

*»-i-i(0* + (D*a 

*<*> = if - KOA + (0A2 <328> 

etc. 

where (i) = .,/ ,v is the Newton binominal symbol. 

Constructed in this way, an s-stage scheme is of the order m < 2s. Furthermore, for 

particular values of A it will be of the order m+1, and, in fact, this is the highest attainable 

order of accuracy. Typically we choose m = 2s, i.e., an s-stage scheme of the order 2s (or 

2s + 1). On the other hand, the choice m < 2s, when some of the coefficients Xj ^e a 

priori specified to be zero, may be advantageous from the stability point of view, e.g., by 
setting xls = x^.] = 0, the resulting i-stage scheme will be of the order 2s - 2 (or, at most 

25- 1). 

Remark: the scheme with m < 2s , e.g., m = 2s - 1, where Xis - 0> should not be 

confused with the scheme with m~2s and A being so chosen that Xis = 0* The former is 

of the order 2s - I while the letter is of the order 2s. It is only for this particular value of X 

that o^*li schemes are identical. I 

EXAMPLE 3.1 

The 3-stage scheme of the order 6 is of the form: 

[/ - XAt2P/dt2]3Un+] = [/ 
+  tedldt 

+   (^-3A)Ar2<?W 

+   ( \ - 3A ) Ar3 <W 
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1_ 3 
4 " 2 
1_     I 
20 " 2 

+  (£- |A + 3A2)Ar4<?W 

+  (j^-jA + 3A2)Ar5*W 

720      8 

with the local truncation error £, satisfies 

[/- AA,2<?W]3E, = [(^ - ^ A + {X1 - A3) Ar7 #/tf]u»+0{Afi) (3.30) 

i e,(A) i 

Setting A = 1.41218087134444 yields Xe = 0 but the resulting scheme is still of the order 6. 

By choosing A to be a zero of e,(A) (e.g., A - 0.444797521031781), formula (3.29) has 

order 7. 

The 3-stage scheme of the 4th order is of the form: 

[/-AA/2^M2]V+1 = [/ 
+  Atdldt 

+   (\ -3A)A/2#/Ä2 

+   ( ± - 3A) Ar3 <W 

+  (^ - | A +3A2)Ar4^r4](/" (3.31) 
24      2 

In order to implement formula (3.27) efficiently, it is necessary to factorize the right- 

hand-side operator into the product of "quadratics" as follows: 

(/ + Xl{X)Atd/dt + £2(A)A/2#/A2 + ... + x^APPs/dt25 ) 

(3.32) 
= (/ + lix{X)Atdldt + vx(X)At2fi/dt2) ... (/ + ns{k)Atdldt + v5(A)Af2<7W) 

-s times— 

Indentity (3.32) leads to the following system of nonlinear algebraic equations for ß and v , 
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/il + //2 + ... + /i5 = 1 

vx + v2 +... + v5 + /^2 + ... + ßsAßs = x2M 

'. (3.33) 

Factorization (3.33) exists and is unique. The coefficients of the factorization can be found 
numerically for a given value of parameter A and are given in an Appendix. 

Next, we use relations (3.21) and (3.22) to express time derivatives in term of spatial 

derivatives. For linear systems with constant coefficients, these equations take a particulary 

simple form: 

u,t     -   - A v 

Uu     =       A2U (3.34) 

Replacing the time derivatives in the left-hand side of (3.27) and the right-hand side of 
(3.29) by formulas (3.34) and introducing auxiliary stages Yi, we arrive at the following 

system of equations 

Yx - \At2A2Yx  = Un - p}AtAUn + \\At2A2Un 

Y2- XAt2A2Y2 = K, - ß2AtAYx + v2At2A2Y\ 

s times (3.35) 

Un+X - XAt2A2Un+x  = YsA - ßsAtAYsA + v£t2A2YsA 

In deriving (3.35) we used the fact that the operators [/ - AAf2A2J~  and [/ - uAM+ 

vArU2] commute. (In general, [f(A)og(A)](U)=  Y<~=n/i(0n^(o)n)dPn(U) = 

\g(A)of(A)](U), where /(A) is a bounded operator, con are the eigenvalues of A and dP n 

are the associated eigenprojections; see also Section 2). 

As can be seen, (3.35) is a sequence of s linear elliptic-like PDE's with the same left- 

hand side operator. Moreover, since operator A2 has zero off-diagonal terms : 

ii 



A2   = 
( -F*(7(.)) 

V 

.* 

-Fk(V(.)) 

\ 

.*    J 

(3.36) 

a typical "one stage problem" is splitted into K-equations and «-equations, which can be 

solved independently and in parallel (the presence of A at the left-hand side of (3.35) 

would have destroyed this property). In addition, the diagonal terms of A2 are identical 

which means that the operators defining the left-hand side of each stage of (3.35) are 

identical for both v- and «-equations (and for all stages). 
Finally, multiplying (3.35) by vector-valued test function W, integrating over Q. and 

integrating by parts, and denoting Y0 = Un and Y a t/n+1, we arrive at the variational 

formulation of the form: 

Here: 

Given YQ e X 

Find y, = 
(V 

VUi 
|e X , i * 1, 2,..., s,  such that 

a(wv , vz)      -   XAt2[b(wv , v;)     -   b^Wy , v.)] 

=   a(wv,viA)   +   ^/Ar[^(H'v,M/.1)   -   b^Wy, «M)J 

+    viAf2[&(wv, viA)   -bjiwy,viA)] 

a(wu , «•)     -   X&t2[b{wu , ».)      -   bjiwu , «•)] 

=   a{wu,uiA)   -   ^Arfl(wa,vM) 

+    vi At2[b(wu , nM) - bj{wu , uM)] 

for all admissible test functions W = 
'W 

w 

a(w, u) 

b(w, «) 

b^w,u)   = 

wTu dx 

J      wTnkR
klu 

dx 

ds 

(3.37) 

(3.38) 
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Jacobian fluxes Ru = -»r— are now constant matrices, and nk is the unit outward normal. 

Replacing X in (3.37) with a finite dimensional subspace Xh of X , we arrive at the 

fully discretized problem. 

Given Yht0e Xh 

Find Y    = 
fv h,i 

Kuh,i 
G X.  J = 1, 2,.... s, such that 

a(wv,vhi)   -   \At2[b(wv, vhi)   -   ^,vA(.)] 

=   a(wv , vhJ_x) +   iuJAr[6(H'v,w/M-.1) -   Mw'v . "A|M)1 

+    v. Ar2[ö(wv , KäM) - ö^wv , vhM)] 

a(wu , »Afl-)   -   XAt2[b(wu , uhi)   -   bfiwu , wA .)] 

=   a{wu , IIA-.!> -   ji. Ar a(wü , vAM) 

+   v. A/2[fr(nrB , wAM) - ^wH , »AM)] 

for all admissible test functions W = 
rw v   \ 

<wu 
e *, 

(3.39) 

Formula (3.39) is referred to as an j-stage, high-order Taylor-Galerkin (TG) method. 

4    A Linear Stability Analysis 

We shall now restrict ouerselves to the special case of the eqautions of linear 

elastodynamics. Thus, we consider the problem of the form 

dO- 
+    #w    =   0 

du 
u   =   uo >dT   = vo 

t> 0 

t = 0 
(4.1) 
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where the operator g is defined by eqns (2.10) - (2.16). It is convenient to convert (4.1) 

into the 1st order system of the following form 

where 

U , +   IA U  =   0 

V   =   V 

def 

AV    = -i 

t> 0 

t= 0 

0       g    \ 

I       0 
V 

(4.2) 

(4.3) 

{/ is a group variable, U - 
rv\ 

KUJ 
, UQ specifies initial conditions, U0 = 

rv0\ 

KU°; 
, and i is 

the imaginary unit. The form of (4.3) is similar to (3.4) except the multiplier i, which is 

introduced to make the operator A self-adjoint. 

The multi-stage Taylor-Galerkin method for solving (4.2) reduces to a sequence of s 

linear variational boundary-value problems of the form 

Given Un e X 

Find Yv Yv ..., Y  v U
n+l e X  such that 

A(W, Yx) + XAt2B(W, Yx) 

= A(W, Un) + ßxMC{W, Un) - vxAt2B{\V, Un) 

A(W, Y2) + \At2B(W, Y2) 

= A(W, Y{) + n2AtC(W, Y{) - v2At2B(W, Y{) 

s times 

A(W, Un+] ) + XAt2B(W, Un+] ) 

= A(W, YsA) + LiAtCiW, YsA) - vsAt2B(W, Ys_{) 

for all admissible test functions We X 

(4.4) 
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where X = X¥ x Xu = HxD(fSl), the bilinear (sesqulinear) forms 4, ß and C are defined 

by 

A, ß, C : ( Xv x Xu ) x ( Xv x Xa ) > C, 

B(W.U)      =   (At/,AW)WxH (4.5) 

and the inner product (•, •)// x // *s defined by 

(V>W)H*H   -    (['.*M*> wu\)H x H 

(4.6) 
=     (v. H>V)H + («> Wu)H 

Each stage of (4.4) defines a linear operator T  from Afj = X n Rg(T-)  into itself: 

r.: x, —»x, 
(4.7) 

and the composition 

^ =:r^^-i0 - o7,i (4.8) 

defines a transient operator T taking an approximate solution Un at time level tn into £/n+1 

r: xx —>xx 

yn + l = 7^/1 
(4.9) 

It should be noted that bilinear forms forms A and B are symmetric (Hermitian) 

A(W, V)  =A{U,W) 

(4.10) 
B(W, U)  = B(U,W) 
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and bilinear form C is skew-symmetric (skew-Hcrmitian) 

C(WM/)    =   - i(U9AW)HxH 

-  " HAV.V)H*U 

-   - '<".**) JIxI/ (4.11) 

=   - C(l/, W) 

Moreover, the bilinear form appearing at the left-hand side of (4.4) satisfies the inf-sup 

stability condition 

sup  \A(Wy £/) + &At2B(W, U)\   > (U,U)HxH + XAt2(AU,AU)HxH (4.12) 

and defines a natural, energy norm for problem (4.4). Condition (4.12) implies also that 

the variational problem (4.4) posesses a unique solution Un+1 and guarantees the usual 

convergence properties for variational boundary-value problems. 

To investigate stability properties of (4.4), we need to estimate the eigenvalues of 

transient operator T, or, equivalently, the eigenvalues of the the following eigenproblem 

Find an eigenpair (jß, 0 * U € X ) 

and Yv Yv ..., K5le X    such that 

A(W,YX) + XAt2B(W, y,) 

= A(W, V) + ßxAtC(W, U) - vxAt2B{XV, U) 

A(W,Y1) + XAt2B(W,Y7) 
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= A(W, y,) + n2AtC(W, K,) - v2A/25(W, K,) (4.13) 

s times 

ß[A(W, 1/) +AAr2ß(W, U)] 

= A(H\ y5.t) + ßsAtC(W, YsA) - v5At2B(W, YsA) 

for all admissible test functions We X 

Toward this end we notice that the underlying operator A is self-adjoint (in the complex 

sense) and has a pure point spectrum 

o(A) =  {0, cox , cox , co2 , ö)_2 , ...} 

—> oo , con   e R+ 0 < G), < co2 < ... < cün 

(4.14) 

with corresponding orthonormal eigenfunctions {Un} such that 

A =  \ <»<//> 

/ = dP o + Jl dP. 

A{Um,Um)= 8mn 

(4.15) 

(4.16) 

(4.17) 

where dPn(>) = A(\ Un)Un , dP0 is the projector onto N(A), co n s -ß>n and C/_n = - Vn 

By taking 

</ = rfp0«/) + £~ ^ ^-w (4.18) 

Zj - dPtfp + 2^-*>m(zp (4.19) 
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W =Un €   N{A) (4.20) 

eigenproblem (4.13) can be reduced to the following form: 

Find an eigenpair (Qn ,0* U e X ) 

and Yv Y2> ..., YJmie D(A)    such that 

A(£/rt,ri) + AAf2<w*Att/,I,y1) 

= A(Un,U) - ißxtoconA{Un, V) - vxAt2G)lA(UniU) 

A(Un,Y2) + XAt2C02
nA(Un,Y2) 

= A(Un, Kj) - in2toa>nA(Un, Kt) - i^Aag A(l/n, J^) (4.21) 

5 times 

ß„ Nf».V) + AA/2»*/»(!/„,*/)] 
= Mvn, yj4) - iß£mnA(un, y,.,) - vfifi«£AVJm, y,.,) 

for f/„G * 

From (4.21), we can obtain Qn , 

ns    1    v,(A)A,V„ - i/i.U)At »„ 
(4.22) 

/I 

and its modulus 

,P ,2      r-p    0 - v,a)At2K)2  + 0/,a)A« a>„ )2 

'""'   ~Ll»                  (l+AAr^  )' 
(4.23) 

By choosing (/ = WG N(A) it is easily seen that the corresponding eigenvalue of r, #0, 
is equal to unity: 

n0= i (4.24) 
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Similarly, the eigenvalues of they-th stage eigenvalue problem 

Find an eigenpair (.ß. , 0 * Z e X ) such that 

Qjn[A{WyZ) +XAt2B(W,Z)] 

= A(W, Z) + HjAtC(W, Z) - vyA/2£(W, Z) 

for all admissible test functions We X 

(4.25) 

read 
2,.,2 

%» 
l-Vj-qwx JJJJWAJ 0) 

1 + AAr2o>! 

ß,.0  -  » 

and, therefore (4.22) and (4.24) can be written as 

"n   =   TIL ain #1=0, 1, ... 

(4-26) 

(4.27) 

In other words, the eigenvalues of the transient operator T are products of the eigenvalues 
of the component operators T . 

To show unconditional stability of TG methods, we need to show existence of a A such 

that 

VAfeÄ 

n = 1, 2, ... 
(4.28) 

Thus, in order to find a X producing unconditionally stable Taylor-Galerkin method, we 

need to solve the following problem: 

Find AG . it+such that 

n ,    (1 - vß)ät2(o\)2  + pi/AjAr o)n )2 

j=\ 2    2     ,2 (1 +XAt2co"n   ) 
<   1 
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^! + JU2 + ... + ILS  =   1 

V1 + V2 + ... + V5  +  /Ij/lj   + ... +  £    jlt   =  c2(A) 

v,v2...v, = c2s(X) 

(4.29) 

for all At2 col 

Unfortunately, (4.29) can be solved analytically for s = 1 only. In this case, it reduces to 

finding X such that 

(l -{\- X)At2co2
n)

2 + At2co] 

(l +XAt2co2
n)

2 
< 1 (4.30) 

which is satisfied for all Ar provided X > -. (This result was proven in an alternative way 

by Demkowicz et al. in [1].) For s > 1 we compute fi- and V for a given X and verify 

stability criterion (4.30). The results of numerical computation of the ranges of X which 

satisfy (4.29) are summarized in Tables 4.1 and 4.2. In addition, Figs. 1-7 show the 

variation of |X2J as a function of At2co   for A's lying at the boundary of stability regions 

listed in Tables 4.1 and 4.2. 

Table 4.1 

s m X 

1 2 U>°°) 
2 4 {0.47048, oo) 

3 6 [0.695, oo) 

4 8 [0.91943, oo) 

5 10 [1.15, oo) 
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Table 4.2 

s m A 

3 4 [0.22, oo) 

4 6 [0.29, oo) 

5 8 [0.38, oo) 

It is interesting to check whether the 5-stage methods of order 25+1, i.e., the methods of 

the highest attainable order of accuracy, are unconditionally stable. Table 4.3 gives the 

largest values of A producing 5-stage methods of the order 25+1. Unfortunately, all those 

A's are not in the range of unconditional stability, and, therefore, the 5-stage (25+l)th order 

methods can be at most conditionally stable. 

Table 4.3 

m 

4 6     2   V270 

3 6    0.444797521031781 

4 8    0.583260771000355 

5 10    0.721627161040466 

Next we check stability properties of the 5-stage 25-th order methods with A so chosen that 

coefficient c2s = 0. Table 4.4 lists the smallest of such A's and Figs. 8-11 show the 

corresponding variations of eigenvalues \£2 | as a function of At2con . As expected, all 

those A's produce unconditionally stable Taylor-Galerkin methods. 

Table 4.4 

m 

1 2 j 

2 4 0.956435464587639 
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3 6    1.41218087134444 

4 8    1.86773692752801 

5 10    2.32321418507049 

Moreover, this class of methods has the property that the eigenvalues Qn tend to zero as Ar 

goes to infinity 

lim    |ßj = 0 (4.31) 
A/ -*oo 

This is easily seen, since from (4.23) we have 

lim     \Qn\ =   |V»V2^"VJ| (4.32) 
A/ ->oo ^5 

and one of the v is equal to zero. In fact, all the methods with m <2s will have property 

(4.32). 
Equation (4.32) suggests also a criterion of selection of A for methods with m = 2s. 

Namely, of all the A's guaranteeing unconditional stability we choose the one for which 

|Vj v2 ...vs\/X
s is the largest, i.e., we choose the A which will produce the method with 

least possible numerical dissipation. These optimal values of A as well as corresponding 

asymptotic values of |ßj are given in Table 4.5. As can be seen, all the methods but s - 1 

are dissipative. Note also that the optimal A's lie at the boundary of stability regions listed 

in Table 4.1. 

Table 4.5 

s m A \vxv2...vs\IXs 

1 2 l 
4 1 

2 4 0.47048 0.937 

3 6 0.695 0.904 

4 8 0.91943 0.887 

5 10 1.15 0.868 

33 



Figure 12 illustrates the decomposition of the eigenvalue of the transient operator T into 
the product of the eigenvalues of the component operators T- for the 4-stage 8th order TG 

method (compare eqn (4.27)). As can be seen, the moduli of eigenvalues of T. are bounded 

but they are not necessarilly less than unity for all the component operators. (This property 

also holds for other unconditionally stable schemes). In general we have 

\njn\< Cj   ,      ; = 1,2, .... s (4.33) 

where 

Cj   =    ess sup     \Qhn | (4.34) 
o   2 0<Arco<oo n 

usually C   - max{1, |v-\/X }. 

Thusfar we investigated stability properties of TG methods for Xx being infinite- 

dimensional and we showed the existence of ranges of the stability parameter X for which 

the spectral radius of T, r(T), is less than or eqal to unity. To show unconditional stability 
of TG methods for finite dimensions, i.e., when T is restricted to Xh (Xh c X^, dim Xh 

< oo), we will show that the spectral radius of T satisfies the following maximum principle: 

BATU,TU) 

where 

£,(£/, U) = A(U, U) + XAt2B(U, U) (4.36) 

is the bilinear form appearing at the left-hand side of (4.4), and 

r(T)  =    sup     |# | (4.37) 
ßmeot7) 
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Indeed, 

BX(U,V) = 

= 5,(d/>0(£/) + ^m^dPj.U).dP0{U) + Tl^nM ) 

=A(dP0(ui dp0(u)) +^(xr=.„o ^ u~)v»• EIL *<"• w. > 

+*AA»(£L »«A(I/. »j»». x~ M»,/(«/. t/„)t/„) 

= A(dp0(i/), <*/>„(#)) + £~^ W' t/»)|2(1 + AAf2KI2) <438> 

and 

BX(JV,TV) = 

= /t(rf/>0(l/) , dP0(£/) ) +/»(Xr=^ß^^' "-)"« • SÜL.^^ W. ) 
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= A(dP0(U) , dP0(U) )   + ]T~ ^ \Qn? U(f/' «0p(l + MfloiJ2 ) 

<A(dP0(U) , dP0(tf) ) + sup|flj2 £~ ^ |A(I/f t/n)|
2(l + AA/2|ö>J2 ) 

< max{ 1, sup|ßj2} [A(dP0(U) , dP0(l/) ) + ^"^ |A(£/, f/„)|2(l +   Ut2\cof )] 

= max{|n/,sup|ßj2 }/?,(£/,*/) 

= r2(T)Bx(U,U) (4.39) 

Thus, 

sup 
BATU , ri/) 

< r*{T) (4.40) 

Conversely, 

IßJ2  - 
Bx(TUn,TUn)   ^     cnn    B}(TU ,TU) 
BAUm,Um) 

<     sup 
IV^/J 1/6 jf, «1^.^) 

l/*0 

(4.41) 

from which (4.35) follows. 

Consider now the finite dimensional counterpart of eigenvalue problem (4.13): 

Find an eigenpair (Qh, 0 * £/Ä € XA ) 

and ZA j, ZA 2 ^/, v_ie ^*   such that 

A(W, Z.   ,) + XAt2B(W, Zh x) 

= /UVV, Uh) + /i,A/C(W, {/A) - v,A/2ß(W, l/A) 
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A(W, Zh 2) + XAt2B{W, Zh 2) 

= A(W% Zh j) + /i2ArC(W, Zh x) - v2At2B(W, Zh x) (4.42) 

s times 

ßA [A<W\ I/ä) + XAt2B(W, Uh)] 

for all admissible test functions We X. 

Since 

max|ß,|2   <     sup 
BX{TU , TU) 

üixh      BtW,U) 
u *0 

<     sup 
BATU,TU) 

V*XX       BX{U,U) 

U *0 

(4.43) 

_  r2 rz(T) 

unconditional stability of the TG scheme for infinite dimensional levels (i.e., r2(T) < 1 V 

At e R+) implies its unconditional stability at finite dimensional levels, independently of 

the approximation used with respect to space variables (any finite element mesh). 

5. Adaptivity (Linear Problems) 

5.1   Error Estimation for High-Order TG Methods 

As a starting point, we consider the estimation of the spatial approximation error 

commited at a typical stage. They-th stage problem reads 
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Given ZA./>;y-i€ Xh,P 
ündZh,P;je Xh,P suchthat 

(5.1) 

for all admissible test functions We X h.P 

where 

BX(W, U) = A(W, U) + AA:2ß(W, U) 

LAW, V) = A{W, V) + ßjAtCiW, V) - v;Af2ß(W, V) 
(5.2) 

X h     c Xx, dim A.     < oo and indices /z and /? refer to the use of arbitrary h-p finite 

element meshes, with locally varying mesh size h and spectral order p. 

Assuming that there is no error in Zh -x, we consider the enriched space Xh x 

corresponding to the same mesh but with local order of approximation uniformly increased 

by one and we define the relative error as 

p( '   —   7 7 
*j      ~ *h,p+l;j '  t'h.p-.j (5.3) 

where Z^    x ■ is the enriched space solution. 

We estimate l|£j  |L using the element residual method in the form [5] 

\\E^\\E   =    sup 
1 We X h.p + \ \w\, 

-   n%h,p+\;j   '   Zh,p;j ll£ (5.4) 

<- (L <> 
1/2 
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where 

• ||-||£ is the global energy norm defined as 

\\U\\E   = BX(U, U)m (5.5) 

• n„ • is the element error indicator function evaluated as 
K,J 

1K.j     =ß,.A,;.^.;)1/2 (56) 

with Bx ^.the element contribution to the (global) bilinear form Bx and the <pK    the 

element indicator function which is the solution to the local problem 

Find <j)K j G xl p+l(K) such that 
(5.7) 

*,.*<W. *,.,■) -   RjW) V WeX°hp+l(K) 

where Rj is an appropriate residual corresponding to element K and A^   +1(Af) is the 

kernel of the h-p interpolation operator defined on the element enriched space 

For all details we refer to [5]. 

Next we consider the error E-   which is caused by the error in the previous stage 

solution Zh     . j and enters (5.1) through the right-hand side. Formally E    is computed 

as 

where Th    {.j  is the operator taking the previous stage solution Zh  +1 -.] into Zh    {- 

Th,p+\\j  :   Xh,p+\     >*/i,/>+l 

Zh,p+\\j = Th,p + \;j  Zh,p+\J-\ 

(5.9) 
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and E-x is the error in ^^.p+xj-v 

Ej-\   ~  E}-\    +   Th,p+\,j.\Ej.2   +   Th,p+\;j-YoTh.p+\J-2Ej-3 

n, p+l;j-l n, p+1; j-2 n,/>+!; 2     1 

Notice that Ex is the accumulated error up to stage j-l. 

We have the following estimate: 

ii^2)ii£ - un.r+ujqJl 

* l\Th,p+Uj\\l   \\EjJ\l 

-     sup hVJLim  ||E   ||2 
f/GAÄ.p+l ' 

«a, ^# ** 
V *0 

=     r2 

(5.10) 

(Will, 

*   C? H^.,111 (5.11) 

where r(7\) is the spectral radius of T ■ and C are the constants defined by (4.34). In 

deriving (5.11) we used the following maximum principle 

BAT V , TV) - 
SUp R  ill    in = r(T) <5"12) UeXx BX{U,U) J 

which can be proved in exactly the same way as the maximum principle (4.35). 

Thus, the spatial approximation error accumulated up to the J-th stage is given by the 

following recurrence relation 
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(5.13) 
<S ||E<"||£ +   Cj UEjJc 

By using (5.13) at each stage, we can estimate the spatial approximation error commited at 
a typical time step Vn

h > Un
h
+l . Accordingly, 

\\ES\\E  &W$%*  CS\\EJ\E 

(0 llß,ll£ = \K% 

and, therefore, 

* cs icsA (cs.2 ...c2 ||fij% +||4
1)||£ ) + |p4l)gB ) + ... + llfi£l

)lk) + l|fii1)HE 
(5.15) 

where it is assumed that there is no error in the previous step solution If! . It can also be 

shown that ||£_||£ is a bound for the relative spatial approximation error commited at a 

typical rime step: 

Kh * n<c, -»rin« (S.I« 

where 

uVl a Th „ u I h, p n, p      h, p 

(5.17) 

Uh.p+\ 'h.p+\Uh.p 

anc* Th p and Th    . are restrictions of transient operator 7\ eqn (4.6), to Xh    and 
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Xh,p+\ .respectively. 

To account for the total error commited at a typical time step, it is also necessary to 

consider the temporal approximation error. We estimate the relative temporal approximation 

error as follows: 

\KWE =  \Kl ■ KIWB (5.18) 

where Un^x is the solution obtained by using an s-stage m-\\\ order TG scheme which is 

referred to herein as the basic solution scheme and &£+1 is the solution obtained by using 

the (s+l)-stage (m+2)th order scheme (with the same stability parameter X and the same 

time step Ar ) which is referred to as the auxiliary solution scheme. Notice that the 

definition of auxiliary scheme is unique. Since the bilinear form defining the left-hand side 

of the basic method is the same as that defining the left-hand side of the auxiliary method 

(since X and Ar are unchanged), the computation of V^+     and, hence, ||ET||£ is 

economically feasible. 

Thusfar we estimated the approximation error \\E ,n \\E commited at a typical time 

step and consisting of spatial approximation error and temporal approximation error : 

\\E(l)J,\\E = \\EnJE + IIH^BJ (5.19) 

To obtain the error for the whole evolution process, it is necessary to consider the error 

\\E   '  \\F which is introduced by the error in the previous time step solution U" 

Formally, 

El2Xn   = *"„, „,,£"•' (5.20) 

where Th     , is the transient operator taking the previous time step solution U* 

into C/J*   j   and En    is the error in U"    . (More precisly, En    is the error accumulated 

up to the («-l)th time step). 

We have the following estimate: 
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ll^li^iir^ir'iil 

* nr^uiHE-x 

-     "P BAU.V)      H£    »C (521) 

V *0 

= r2(T) HE"1 II2. 

S    l|£""'ll£ 

where it is assumed that r{T) < 1. 

Thus, the approximation error accumulated up to the n-\\\ time step is given by the 

following recurrence relation 

l|£"H£ < p"»-"^ + IIE'
2
^ 

(5.22) 

< ||£(,)-"||£ + llE-'llg 

Inequality (5.22) provides a basis for the control of the quality of results for the whole 

evolution problem. 

5.2  Adaptive Strategy and Computational Considerations 

We neglect the temporal approximation error (inasmuch as we use high-order 

schemes); we use a constant time step At and employ a simple strategy based on 

equidistribution of spatial approximatin error for each time step. The equidistribution 
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strategy means simply that a number of elements with the largest error indicators are 
refined. The use of a constant A/ is permissible because of the unconditional stability of TG 

schemes. 

Formally the algorithm is as follows: 

Step 1     Read in data (geometry, initial conditions, etc.). 
Specify time step A/, number of time steps NSTEP and the target error for the 

whole evolution problem r]t. 

For each time step U" >  Un.+l   : 
n, p n, p 

Step 2     Specify the target error for "one time step problem" 77^ , e.g., rj^j = 
NSTEP 

Step 3     Solve for £/£+1, save the internal approximations Zh     .,/ = 1, 2,... s-1. Use a 

direct solver or an iterative solver using Vn
h    and the previous time step internal 

approximations as starting vectors. 

Error estimation 

Step 5     For each element K determine error indicators rjKj via (5.6) 

Step 6     Determine the global error commited at this time step: 

l|£(1,-"ll£ - H£n
0ll£ 

where llEJ^ is estimated via inequality (5.15). 

Step 7     Check the error. If \\E(l)'n \\E < rjAl, then go to Step 13. 

Step 8     For each elemen* K determine error indicators for mesh refinements r\K. Identify 

the largest admissible error indicator T]ad . 

Step 9     Create a list of elements such that r\K > 77^ . 
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Step 10   Check the number of elements ^n the list. If it is too small (zero in particular), 
decrease r\a(i and return to Step 9. 

Step 11   Refine elements K from the list created at Step 9. 
Project Vn    ,Zh     -J = 1, 2, ... 5-1, and Un

h
+l onto enriched space. 

Step 12   Solve for U?+l using iterative solver and coarse mesh solutions Un
h    , Zh     ■ 

j =1,2,... 5-1, and £/"+1 as starting vectors. Save the fine mesh solutions. 

Set "fine" = "coarse" and return to Step 5. 

Step 13   For each element L, determine error indicators for mesh unrefinements <^. 

Identify the largest admissible error indicator <^. 

Step 14  Create a list of elements L such that 

• tiL<omt]ad 

Step 15   Unrefine all elements L from the list created at Step 14. 

Project U"    , Zh     -,j = 1, 2, ... 5-1, and Un
h
+} onto unenriched space. 

Step 16   SctUn
h     = Un

h
+l and go to Step 2. 

The element indicator for mesh unrefinements &, is defined to be averaged "physical" 

energy (cf. (2.30)) 

„   EL(u
n

h
+] ,uny ) 

«2 = *'"    ,n    'P (5-23) 
meas(i^) 

with Ei the element contribution to the global energy E and meas(Ii) the area of element L. 

Element error indicators for mesh refinements rjK for typical time step are chosen in 

such a way that 
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1/2 
Kh   *  (5>   li       ) (5-24) 

Accordingly, rjK are computed as: 

%  =  »lr.2   +   C2^.1 

+ 2qsl\2 

for 2-stage scheme, 

(5.25) 

+ 2(q41) + qqE^)^ 3 (5.26) 

T   -ZL--J C-^/i i    /j„ ^ 

for 3-stage scheme, and 

*?*  = <4   +   CX.3   +   C4C3^.2   +   C4C3C2<1 

+ 2(C4^
!) + QC34

U + CACzCß™)7)KA 

+ 2(clC3E[l) + C*C3C2i?<l)H.3 

+ 2C4C3C2ßi    1^2 

(5.27) 

for 4-stage scheme. 

The solution strategy for the "one-stage problem" deserves special attention. Since the 

formal operator equivalent to the bilinear form ß, has zero off-diagonal terms, velocity 

equations and displacement equations can be solved independently and in parallel (the 

coupling between velocity and displacements is only through the right-hand side). 
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Finally, we emphasize the need of using an iterative linear equation solver in the 

adaptivity loop (cf. Step 12). Notice that the matrix defining the left-hand side of the 

resulting algebraic problem is syrr netric and positive definite which is the most popular 

case in the theory of iterative solvers. Notice also that the total computational effort 

involved in the adaptivity loop is governed by the total number of iterations required to 

solve the resulting system of linear equations on different meshes rather that by the total 

number of mesh adaptations. 

6   Numerical Example 

Stress wave propagation in an elastic panel with a cut-off (2D) 

As an example we chose the problem of wave propagation in an elastic panel with a 

cut-off (Fig. 13). A plane progressive transient wave is normally incident on a traction-free 

rectangular cut-off and gives rise to complicated pattern of stress field caused by the 

interference of incident, reflected and diffracted waves, and by singularities at the comers. 

The problem was solved for the following data: 

• Lame coefficients, \x - 0.25 Pa, X = 0.5 Pa 

• Mass density, p0 = 1 kg/m3 

• Initial conditions: 

x-velocity, vx(xyy, 0) =fix)[H(x - 1) - H(x -1)] 

y-velocity, vy(x,y, 0) = 0 (6.1) 

^-displacement, ux(x, y, 0) = F(x) 

y-displacement, uy(x, y, 0) = 0 

where fix) = -1 + 32(^ - JC)
2
 - 256(^ - x)4 and F(x) = anti-derivative of fix). 

The problem was solved by using a 2-stage 4th order Taylor-Galerkin method with 

stability parameter A = 0.47125 and constant time step At = 0.0078125 s. No local p- 
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refinements were used in this example, as the p capabilities of the code were used only to 

specify an initial order of approximation (p = 4 in the example). 

Figure 14 shows the initial finite element mesh and Figs. 15 and 16 show the initial 

condition functions in the form of 3D plots (x-velocity and Jt-displacement, respectively). 

Figure 17 presents the adapted finite element mesh at time t = 0.25 s and Figs. 18-23 

present the corresponding distributions of velocity components (vx and vy) and 

displacements (ux and uy). Displacement vector, as the most interesting, is shown in the 

form of both the 3D plots and contour maps; velocity components are presented in the form 

of 3D plots only. As can be seen, a doubling of the amplitude of ;c-velocity occures at the 

part of the left face of the cut-off which is in perfect agreement with the plane wave solution 

(the wavefiel is locally plane at this region of space-time). Also, sharp gradients of vy and 

uy in the vicinity of point A(JC = 1.5 m, v = 0.5 m) can be noticed. Similarly, Fig. 24 

presents the finite element mesh at time t = 0.5 s and Figs. 25 - 30 present corresponding 

distributions of vXj vy, ux and uy. 

Figures 31-33 show the finite element mesh at time t = 0.75 s and Figs. 34 - 40 

show the corresponding solution (vx, vy, ux and uy). Figure 32 presents a zoom of the 

finite element mesh in the vicinity of comer A. A total number of 19 mesh refinements was 
needed to capture the singularity at A. Thus, the CFL number, v: 

ArpKmax{\XK xI, lA* J} 
v =  max —— u,   ' 'y (6.2) 

K h* 

is of the order of 103. This would place a severe limitation on the time-step size for any 

conditionally stable scheme. Here hK is the element size, pK the corresponding order of 
approximation, and XKx, XK%y are the maximum values of eigenvalues for Jacobian 

matrices Rki. Similarly, Fig. 33 presents a zoom of the finite element mesh in the vicinity 

of point B(x = 1.75 m, v = 0.5 m). 

Figures 40 - 42 show the distribution of the components of stress tensor 7*«, Tyy and 

T^y, in the form of 3D plots. A very strong singularity in stresses at the corner points A 

and B are observed. Finally, Fig. 43 shows the history of the error bound (5.22) for the 

whole evolution problem, and Fig. 44 shows the number of mesh adaptations as a function 

of time. 
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APPENDIX:    Coefficients for TG Schemes 

Listed in Table Al are coefficients /iy and Vj of factorization (3.32) for various schemes and 

various values of stability parameter X. 

Table Al 

s m X to v, 
2 4 0.47125 -0.429094784839126 

1.42909478483913 

-0.378098940635512 

0.548816059850774 

0.956435464587639 -1.24942270597577 0. 

2.24942270597577 1.39760887500830 

3 6 0.695 1.49387844844708 

1.49654973431122 

-1.99042818275830 

0.646649962127165 

0.455862817625521 

1.02905635860739 

1.41218087134444 1.59760032454113 0. 

2.26129033257844 1.55344122448889 

-2.85889065711958 2.12952443875392 

4 0.22 1.20431944918114 0.423802122065587 

0.487902005145560 0. 

-0.692221454326699 0. 

4 8 0.92 1.51162577127872 

-0.834510555244671 

-2.07038751330515 

2.39327229727110 

0.699029877978738 

-0.525519943835058 

1.17729970655410 

1.46702890097419 

1.86773692752800 2.24345154354026 1.63319393127839 

-1.80258065404047 0. 

-2.95806878678511 2.41911998051307 

3.51719789728532 3.17835029737392 
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6 0.29 1.40623086480151 

-1.45772045255471 

0. 

1.05148958775320 

0.492263592133862 

0.562362275582733 

0. 

0.389406390318465 

5 10 1.15 1.82704798577991 

-2.74777882789812 

-2.09945299083185 

2.49966934516921 

1.52051448778085 

0.581806316107477 

1.91908830024251 

1.27190423205347 

1.66880094503773 

0.736603622974089 

2.32321418507049 2.22324138974647 1.68098156751573 

-3.93321086941255 3.93536053161087 

-2.98201123343815 2.58923026751565 

3.63234175933788 3.54903685460515 

2.05963895376635 0. 

8 0.38 0.641021237097618 0. 

-0.905360775899868 0. 

-1.47520238954498 0.625291329822029 

1.70120453471140 0.751557791280019 

1.03833739363583 0.412675810404174 
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Fig. 43   Wave propagation in an elastic panel problem. The bound on the 
global energy norm of the error as a function of time. 
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Fig. 44   Wave propagation in an elastic panel problem. The number of 
mesh adaptations as a function of time. 


